Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach

نویسنده

  • B. Aumont
چکیده

Organic compounds emitted in the atmosphere are oxidized in complex reaction sequences that produce a myriad of intermediates. Although the cumulative importance of these organic intermediates is widely acknowledged, there is still a critical lack of information concerning the detailed composition of the highly functionalized secondary organics in the gas and condensed phases. The evaluation of their impacts on pollution episodes, climate, and the tropospheric oxidizing capacity requires modelling tools that track the identity and reactivity of organic carbon in the various phases down to the ultimate oxidation products, CO and CO2. However, a fully detailed representation of the atmospheric transformations of organic compounds involves a very large number of intermediate species, far in excess of the number that can be reasonably written manually. This paper describes (1) the development of a data processing tool to generate the explicit gas-phase oxidation schemes of acyclic hydrocarbons and their oxidation products under tropospheric conditions and (2) the protocol used to select the reaction products and the rate constants. Results are presented using the fully explicit oxidation schemes generated for two test species: n-heptane and isoprene. Comparisons with wellestablished mechanisms were performed to evaluate these generated schemes. Some preliminary results describing the gradual change of organic carbon during the oxidation of a given parent compound are presented. Correspondence to: B. Aumont ([email protected])

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling the evolution of organic carbon

Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach B. Aumont, S. Szopa, and S. Madronich Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Universités Paris 7 et Paris 12, 94010 Créteil Cedex, France National Center for Atmospheric Research, Atmospheric Chemistry Div...

متن کامل

Modeling SOA formation and aging from the multigenerational oxidation of Intermediate Volatility Organic Compounds

Secondary Organic Aerosols (SOA) are formed by condensation of multifunctional species produced during gaseous oxidation of Volatile Organic Compounds (VOC). The Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) has been developed to describe highly detailed gas phase oxidation schemes for organic compounds under general tropospheric conditions and the partit...

متن کامل

The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation

Our current understanding of secondary organic aerosol (SOA) formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i) the potential for products of multiple oxidation steps contributing to SOA, and (ii) the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of d...

متن کامل

Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols.

The complexation of iron(III) with oxalic acid in aqueous solution yields a strongly absorbing chromophore that undergoes efficient photodissociation to give iron(II) and the carbon dioxide anion radical. Importantly, iron(III) oxalate complexes absorb near-UV radiation (λ > 350 nm), providing a potentially powerful source of oxidants in aqueous tropospheric chemistry. Although this photochemic...

متن کامل

Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere

Secondary organic aerosol (SOA), particulate matter composed of compounds formed from the atmospheric transformation of organic species, accounts for a substantial fraction of tropospheric aerosol. The formation of lowvolatility (semivolatile and possibly nonvolatile) compounds that make up SOA is governed by a complex series of reactions of a large number of organic species, so the experimenta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005